MENU

PUBLICIDAD

Me Gusta   0 Comentar    0

Actualidad y Artículos | Depresión, Trastornos depresivos   Seguir 56

Artículo | 16/02/2023

Detección y medición de la depresión en las redes sociales mediante un enfoque de aprendizaje automático

  • Autor/autores: Liu D , Feng XL , Ahmed F...(et.al)



0%

Antecedentes La detección de la depresión cobró importancia poco después de que esta problemática enfermedad surgiera como un grave problema de salud pública en todo el mundo. Objetivo Esta revisión sistemática tiene como objetivo resumir los hallazgos de estudios previos sobre la aplicación de métodos de aprendizaje autom&aa...

Estás viendo una versión reducida de este contenido.

Para consultar la información completa debes registrarte gratuitamente.
Tan sólo te llevará unos segundos.
Y si ya estás registrado inicia sesión pulsando aquí.

Antecedentes


La detección de la depresión cobró importancia poco después de que esta problemática enfermedad surgiera como un grave problema de salud pública en todo el mundo.


Objetivo


Esta revisión sistemática tiene como objetivo resumir los hallazgos de estudios previos sobre la aplicación de métodos de aprendizaje automático (ML) a datos de texto de las redes sociales para detectar síntomas depresivos y sugerir direcciones para futuras investigaciones en esta área.


Métodos


Se realizó una búsqueda bibliográfica para el período de enero de 1990 a diciembre de 2020 en Google Scholar, PubMed, Medline, ERIC, PsycINFO y BioMed. Dos revisores recuperaron y evaluaron de forma independiente los 418 estudios que constaban de 322 artículos identificados a través de búsquedas en bases de datos y 96 artículos identificados a través de otras fuentes; 17 de los estudios cumplieron los criterios de inclusión.


Resultados


De los 17 estudios, 10 identificaron la depresión según el estado mental inferido por el investigador, 5 la identificaron según las propias descripciones de los usuarios sobre su estado mental y 2 se identificaron según la pertenencia a la comunidad.


Los enfoques de aprendizaje automático de 13 de los 17 estudios fueron enfoques de aprendizaje supervisado, mientras que 3 utilizaron enfoques de aprendizaje no supervisado; el 1 estudio restante no describió su enfoque de ML.


Los desafíos en áreas como el muestreo, la optimización de los enfoques de predicción y sus características, la generalización, la privacidad y otras cuestiones éticas requieren más investigación.


Conclusiones


Los enfoques de ML aplicados a los datos de texto de los usuarios en las redes sociales pueden funcionar de manera efectiva en la detección de la depresión y podrían servir como herramientas complementarias en la práctica de la salud mental pública.


Para acceder al texto completo consulte las características de suscripción de la fuente original:https://mental.jmir.org/

ABRIR ENLACE FUENTE

JMIR Ment Health
Palabras clave: depresión ; aprendizaje automático ; redes sociales 
Url corta de esta página: http://psiqu.com/2-67002

Comentarios de los usuarios



No hay ningun comentario, se el primero en comentar

Lundbeck - de la depresión se sale
-Publicidad

Síguenos en las redes

desvenlafaxina antidepresivos
Publicidad

LIBRO RECOMENDADO

GOLDBERG, STAHL. PSICOFARMACOLOGÍA PRÁCTICA

Goldberg y Stephen M. Stahl. Prologo de Alan F. Schatzberg. Durante las últimas cuatro décadas, l...

COMPRAR AQUÍ

VER MÁS LIBROS RECOMENDADOS
CFC

Intervención psicosocial en situaciones de emergencias y desastres

Inicio: 19/06/2024 | Precio: 120€

Ver curso